Global asymptotic behavior and boundedness of positive solutions to an odd-order rational difference equation
نویسندگان
چکیده
In this note we consider the following high-order rational difference equation xn = 1+ k ∏ i=1 (1− xn−i ) k ∑ i=1 xn−i , n = 0, 1, . . . , where k ≥ 3 is odd number, x−k , x−k+1, x−k+2, . . . , x−1 is positive numbers. We obtain the boundedness of positive solutions for the above equation, and with the perturbation of initial values, we mainly use the transformation method to prove that the positive equilibrium point of this equation is globally asymptotically stable. c © 2008 Elsevier Ltd. All rights reserved.
منابع مشابه
STUDYING THE BEHAVIOR OF SOLUTIONS OF A SECOND-ORDER RATIONAL DIFFERENCE EQUATION AND A RATIONAL SYSTEM
In this paper we investigate the behavior of solutions, stable and unstable of the solutions a second-order rational difference equation. Also we will discuss about the behavior of solutions a the rational system, we show these solutions may be stable or unstable.
متن کاملAsymptotic behavior of a system of two difference equations of exponential form
In this paper, we study the boundedness and persistence of the solutions, the global stability of the unique positive equilibrium point and the rate of convergence of a solution that converges to the equilibrium $E=(bar{x}, bar{y})$ of the system of two difference equations of exponential form: begin{equation*} x_{n+1}=dfrac{a+e^{-(bx_n+cy_n)}}{d+bx_n+cy_n}, y_{n+1}=dfrac{a+e^{-(by_n+cx_n)}}{d+...
متن کاملAsymptotic Behavior of a Second-Order Fuzzy Rational Difference Equation
We study the qualitative behavior of the positive solutions of a second-order rational fuzzy difference equationwith initial conditions being positive fuzzy numbers, and parameters are positive fuzzy numbers. More precisely, we investigate existence of positive solutions, boundedness and persistence, and stability analysis of a second-order fuzzy rational difference equation. Some numerical exa...
متن کاملBEHAVIOR OF SOLUTIONS TO A FUZZY NONLINEAR DIFFERENCE EQUATION
In this paper, we study the existence, asymptotic behavior of the positive solutions of a fuzzy nonlinear difference equation$$ x_{n+1}=frac{Ax_n+x_{n-1}}{B+x_{n-1}}, n=0,1,cdots,$$ where $(x_n)$ is a sequence of positive fuzzy number, $A, B$ are positive fuzzy numbers and the initial conditions $x_{-1}, x_0$ are positive fuzzy numbers.
متن کاملGlobal Dynamics for a Higher Order Rational Difference Equation
In this paper, some properties of all positive solutions are considered for a higher order rational difference equation, mainly for the existence of eventual prime period two solutions, the existence and asymptotic behavior of nonoscillatory solutions and the global asymptotic stability of its equilibria. Our results show that a positive equilibrium point of this equation is a global attractor ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & Mathematics with Applications
دوره 56 شماره
صفحات -
تاریخ انتشار 2008